The recent technological advances in computer and communication technologies have been fostering an enormous growth in the number of smart objects available for usage. The integration of these smart objects into the Internet originated the concept of Internet of Things (IoT). The IoT vision advocates a world of interconnected objects, capable of being identified, addressed, controlled, and accessed via the Internet. Such objects can communicate with each other, with other virtual resources available on the web, with information systems and human users. IoT applications involve interactions among a number of heterogeneous devices, most of them directly interacting with their physical surroundings.
New challenges emerge in this scenario as well as several opportunities to be exploited. One of such opportunities regards the leveraging of the massive amount of data produced by the widely spread sensors to produce value-added information for the end users. In this context, techniques to promote knowledge discovery from the huge amount of sensing data are required to fully exploit the potential usage of the IoT devices. In this context, data fusion techniques are data techniques dealing with the association, correlation, and combination of data and information from single and multiple sources to achieve refined position and identity estimates, and complete and timely assessments of situations and threats, and their significance. Since IoT data is usually dynamic and heterogeneous, it becomes important to investigate techniques for understanding and resolving issues about data fusion in IoT. Employment of such Data fusion techniques are useful to reveal trends in the sampled data, uncover new patterns of monitored variables, make predictions, thus improving decision making process, reducing decisions response times, and enabling more intelligent and immediate situation awareness.
The goal of this Special Section is to present and discuss the recent advances in the interdisciplinary data fusion research areas applied to IoT. We aim to bring together specialists from academia and industry in different fields to discuss further developments and trends in data fusion area.
Topics appropriate for this special issue include (but are not necessarily limited to):
Data collection and abstraction in IoT
Knowledge fusion in IoT
Machine learning, data mining and fusion for IoT
Data streams fusion in IoT
Data models for IoT
Fusion models for IoT
Subjective Logic
Dynamic analysis in IoT
Social data fusion
Probabilistic reasoning in IoT
Decision systems in IoT
Web data fusion
05月16日
2017
05月18日
2017
初稿截稿日期
初稿录用通知日期
终稿截稿日期
注册截止日期
留言