153 / 2016-11-11 17:24:27
Variable Selection based on Maximum Information Coefficient for Data Modeling
11803,11804,11805
全文录用
Fuchang Chu / North China Electric Power University (Baoding)
Zhenping Fan / North China Electric Power University (Baoding)
Baohui Guo / North China Electric Power University (Baoding)
Dan Zhi / North China Electric Power University (Baoding)
Zijian Yin / North China Electric Power University (Baoding)
Wenjie Zhao / North China Electric Power University (Baoding)
Whether the variable selection is accurate or not affect the accuracy and generalization ability of the model. The traditional variable selection method is difficult to maintain a high stability under high collinearity. In order to solve the problem, we propose a new method MICFS (Feature Select based on Maximal Information Coefficient), which combines the maximum information coefficient with the existing mutual information variable selection method. Firstly, this paper introduces the theory of mutual information and the variable selection algorithm based on mutual information, and then use the maximum information coefficient instead of the original mutual information criterion. Finally, the validity of method is verified by using the Friedman data set. The result shows that this method can meet the requirements of variable selection in a high collinearity and high noise environment.
重要日期
  • 会议日期

    03月25日

    2017

    03月26日

    2017

  • 11月10日 2016

    初稿截稿日期

  • 11月20日 2016

    初稿录用通知日期

  • 11月30日 2016

    终稿截稿日期

  • 03月26日 2017

    注册截止日期

主办单位
IEEE Beijing Section
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询