26 / 2015-08-11 15:45:31
Fault Diagnosis of Marine Reefer Containers Based on PCA-SVM
5604,6394,3097,7527
全文录用
Yinglei Ren / shanghai maritime university
Jun Ji / shanghai maritime university
There are numerous variables in the fault samples of marine reefer containers and collinearity exists among them, so directly use them to train the fault diagnosis model will lead to bad performance. In the paper, the Principal Components Analysis method was used to extract the main information of the faults data and the pretreated data was then used as the model input. SVM method was chosen to build the multi faults diagnosis model, and a fault diagnosis model of reefer containers based on “One versus Rest” SVM was set up. The experimental results showed that the multi faults diagnosis system of reefer containers based on PCA-SVM had high fault classification accuracy of more than 98.4% and fast diagnosis speed. Comparing with the SVM model without PCA preprocessing, fault diagnosis accuracy increased by more than 1.61% and model training time fell nearly 10 ~ 30 times.
重要日期
  • 会议日期

    10月29日

    2015

    10月30日

    2015

  • 09月15日 2015

    初稿截稿日期

  • 09月15日 2015

    提前注册日期

  • 09月30日 2015

    初稿录用通知日期

  • 09月30日 2015

    终稿截稿日期

  • 10月30日 2015

    注册截止日期

联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询