137 / 2016-04-28 10:20:42
Icing forecasting of transmission lines with dynamic naive Bayesian classifier for stage judgment
9946,9947,9948,9949
全文录用
东晓 牛 / 华北电力大学
美琼 吴 / 华北电力大学
天男 马 / 华北电力大学
雅莉 黄 / 华北电力大学
Transmission line icing is a serious threat to the security of power system. Accurate icing prediction is the guidance to ensure the safety of power system. The influence of meteorological factors on ice thickness is different, so the same input-output model makes prediction precision decreasing for the whole icing process. In this paper, a prediction system based on dynamic naive Bayesian classifier for stage judgment is proposed. Firstly, dynamic naive Bayesian classifier is used to classify the line icing stage. Secondly, according to the correlation characteristics between meteorological factors and ice thickness, partial least squares regression and least square support vector machine forecasting models are respectively established for each icing stage. Finally, the prediction accuracy of proposed prediction system and other prediction methods are compared in the case analysis, experiments showed that, the prediction system based on dynamic naive Bayesian classifier for stage judgment can effectively improve the prediction accuracy of line ice thickness.
重要日期
  • 会议日期

    07月09日

    2016

    07月10日

    2016

  • 07月06日 2016

    初稿截稿日期

  • 07月06日 2016

    终稿截稿日期

  • 07月10日 2016

    注册截止日期

主办单位
湖北众科地质和环境技术服务中心
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询