95 / 2014-09-14 22:02:32
An Improved Model Based On Negative Selection Algorithm
negative selection algorithm; artificial immune; semi-supervised learning
全文录用
The widely used negative selection algorithm is one of the important algorithms of artificial immune system. However, there are also some disadvantages, such as insufficient learning of self-tolerance in the circumstance of small training set, which affects the detection accuracy. We use a semi-supervised learning mechanism to solve the inadequate learning problem, expand the training sample source, make training to learn more representative samples. Simulation experiments prove that the semi-supervised learning algorithm can improve the training learning process, improve the detection rate, and have strong adaptive capacity.
重要日期
  • 会议日期

    11月17日

    2014

    11月19日

    2014

  • 10月10日 2014

    初稿截稿日期

  • 10月31日 2014

    终稿截稿日期

  • 11月19日 2014

    注册截止日期

主办单位
IEEE
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询