Defect Detection Method for Power Insulators Based on Improved YOLOv12 Model
编号:98 访问权限:仅限参会人 更新:2025-10-13 11:10:49 浏览:15次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Insulator defect detection in UAV inspection images of transmission lines is hampered by challenges, including complex background clutter and significant variations in object scale. This paper proposes a novel YOLOv12-based method for detecting insulator defects. To effectively enhance the model’s ability to capture irregular breakage edges of insulators, the C3k2-WTConv module is designed, which expands the model’s receptive field through multi-frequency feature fusion. Furthermore, to address missed and false detections of small targets and improve feature extraction performance in complex backgrounds, an attention module named SEAM is introduced into the detection head. Extensive experiments on a self-constructed insulator defect dataset verify the effectiveness of the proposed approach, showing consistent improvements over the baseline in detection precision and robustness. The findings provide valuable insights for advancing intelligent UAV-assisted inspection of power transmission infrastructure.
 
关键词
Insulator defect detection; Improved YOLOv12; Complex background; Data augmentation; Image Recognition
报告人
Tianhao Chen
Student Nanjing Normal University

稿件作者
Tianhao Chen Nanjing Normal University
Huanyu Shi Huazhong University of science and technology
Yong Yang Huazhong University of Science and Technology
Chuan Li Huazhong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询