Perception and Exception Detection of Road Pavement based on an Enhanced DETR model
编号:142 访问权限:仅限参会人 更新:2025-10-13 11:36:36 浏览:66次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate and efficient detection of road pavement distress is essential for AI-driven maintenance systems in modern infrastructure management. Pavement distress exhibits significant size variability while maintaining similar local characteristics, necessitating detection models that can effectively capture both local and global features. However, existing approaches relying solely on Convolutional Neural Networks (CNNs) or Transformers often result in either global feature loss or inefficient feature extraction processes. To address these limitations, we propose PD-DETR, a novel pavement distress detection model that integrates the advantages of real-time object detection Transformer (RT-DETR) architecture. Our method incorporates an optimized NextViT backbone enhanced with Depthwise Separable Convolutions (DSConv) and a fine-tuned MLP ratio, enabling superior capture of both global and local characteristics of pavement distress while maintaining model efficiency. Furthermore, we introduce an innovative AttentionGate mechanism within the hybrid encoder, which facilitates more effective multi-scale feature fusion through channel weighting after feature concatenation. Extensive experiments on the challenging RDD2022 dataset demonstrate the superior performance of PD-DETR, achieving a mean Average Precision (mAP) of 64.27\% with a compact parameter size of 30.0M. The proposed model outperforms state-of-the-art baseline models, including YOLOv5s (57.85\%) and YOLOv9s (60.12\%). This work represents a significant advancement in Transformer-based architectures for pavement distress detection, particularly in complex real-world scenarios, offering both improved accuracy and computational efficiency for practical road maintenance applications.
关键词
Exception Detection,Transformer,Object detection
报告人
Danni Zheng
Student Tsinghua University

稿件作者
Danni Zheng Tsinghua University
Yang Liu Tsinghua University
Hongrui Zhao Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询