Research on Synthetic ECE Surrogate Model Based on Machine Learning
编号:110 访问权限:仅限参会人 更新:2025-10-13 11:25:02 浏览:10次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Electron Cyclotron Emission (ECE) diagnostic serve as a fundamental tool for measuring the plasma electron temperature distribution in Tokamak. Under complex plasma scenarios, Synthetic ECE simulations are employed to assist in the interpretation of diagnostic signals; however, these simulations are computationally intensive. A machine learning-based surrogate model for Synthetic ECE is proposed to enable rapid prediction of electron temperature distribution. Validation results demonstrate that the surrogate model achieves approximately an order-of-magnitude speedup in predicting ECE signals under challenging operating conditions compared to conventional Synthetic ECE simulations, thereby effectively meeting the requirements for real-time signal analysis in Tokamak control systems.
关键词
CNN, Machine Learning, Synthetic-ECE
报告人
Yan Guo
Master Student Huazhong University of Science and Technology

稿件作者
Yan Guo Huazhong University of Science and Technology
Zhoujun Yang Huazhong University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月07日

    2025

    11月09日

    2025

  • 10月12日 2025

    初稿截稿日期

  • 10月30日 2025

    注册截止日期

主办单位
IEEE西南交通大学IAS学生分会
承办单位
西南交通大学电气工程学院
SPACI车网关系研究室
四川大学电力系统稳定与高压直流输电研究团队
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询