Dynamic prediction of dam-break flows based on image-driven deep learning model
编号:27 访问权限:仅限参会人 更新:2025-07-21 16:01:52 浏览:23次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Efficiently predicting dam-break flow is critical for effective flood risk mitigation. This study introduces a deep learning model, Transformer-ResNet-UNet (T-ResUNet), which integrates Residual Network (ResNet), U-shaped Network (UNet), and Transformer architectures to forecast the spatial and temporal dynamics of dam-break water height and flow velocity. Trained on high-fidelity CFD-DEM coupled simulations, T-ResUNet employs recursive input updates for dynamic predictions. Compared to traditional CFD-DEM simulations, T-ResUNet achieves a 1000-fold increase in computational speed while maintaining near-identical accuracy in long-term water wave morphology predictions. Additionally, it significantly outperforms conventional sequence-driven methods in long-term prediction stability. We results demonstrate the superior capability of image-driven deep learning over sequence-based approaches for capturing physical features in dam-break flow predictions.
关键词
multiphase fluid dynamics
报告人
Chengming Lei
PhD Student Wuhan University

稿件作者
Chengming Lei Wuhan University
顺 王 武汉大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月23日

    2025

    08月26日

    2025

  • 07月21日 2025

    初稿截稿日期

  • 08月26日 2025

    注册截止日期

主办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
承办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询