46 / 2025-07-18 23:44:26
Dynamic prediction of dam-break flows based on image-driven deep learning model
multiphase fluid dynamics
全文录用
Chengming Lei / Wuhan University
顺 王 / 武汉大学
Efficiently predicting dam-break flow is critical for effective flood risk mitigation. This study introduces a deep learning model, Transformer-ResNet-UNet (T-ResUNet), which integrates Residual Network (ResNet), U-shaped Network (UNet), and Transformer architectures to forecast the spatial and temporal dynamics of dam-break water height and flow velocity. Trained on high-fidelity CFD-DEM coupled simulations, T-ResUNet employs recursive input updates for dynamic predictions. Compared to traditional CFD-DEM simulations, T-ResUNet achieves a 1000-fold increase in computational speed while maintaining near-identical accuracy in long-term water wave morphology predictions. Additionally, it significantly outperforms conventional sequence-driven methods in long-term prediction stability. We results demonstrate the superior capability of image-driven deep learning over sequence-based approaches for capturing physical features in dam-break flow predictions.
重要日期
  • 会议日期

    08月23日

    2025

    08月26日

    2025

  • 07月21日 2025

    初稿截稿日期

  • 08月26日 2025

    注册截止日期

主办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
承办单位
Southwest Jiaotong University, China (SWJTU)
International Consortium on Geo-disaster Reduction (ICGdR)
UNESCO Chair on Geoenvironmental Disaster Reduction
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询