91 / 2025-04-24 12:55:56
Performance of machine learning models and empirical equations on predicting the scour depth around vibrating pipelines
摘要待审
Zhimeng Zhang / Tianjin University
Yee-Meng Chiew / Nanyang Technological University
Chunning Ji / Tianjin University
Hongwei An / The University of Western Australia
Local scour around a vibrating submarine pipeline threatens its structural stability and
requires accurate predictive models to ensure its safety. This study evaluates the performance of
three standalone Machine Learning (ML) models -- M5 model trees, Adaptive Robust Regression
(ARR), Support Vector Regression (SVR), and an ensemble Gradient Boosting (GB) model on
scour prediction. Their predictive accuracy is compared against four empirical formulas using an
experimental dataset and statistical performance metrics. The results indicate that GB outperforms
all other models, achieving the highest r2 and lowest RMSE and MAPE in the training and testing
phases. M5 and SVR show moderate accuracy, while ARR exhibits the weakest performance.
Empirical equations perform poorly, often significantly overestimating or underestimating scour
depth, demonstrating the limited generalization. Correlation analysis highlights that vibration
amplitude is the dominant factor. These findings emphasize the superiority of ensemble learning
over standalone ML models and empirical equations for improving scour depth predictions.
重要日期
  • 会议日期

    11月04日

    2025

    11月07日

    2025

  • 05月31日 2025

    摘要截稿日期

  • 05月31日 2025

    初稿截稿日期

  • 05月31日 2025

    初稿录用通知日期

  • 11月07日 2025

    注册截止日期

主办单位
Hehai University
Chongqing Jiaotong University
承办单位
Hehai University
Chongqing Jiaotong University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询