Efficient biomolecule modeling and drug discovery with large language models
编号:69 访问权限:仅限参会人 更新:2025-03-25 14:42:39 浏览:25次 口头报告

报告开始:2025年03月30日 10:20(Asia/Shanghai)

报告时间:20min

所在会场:[S7] 前沿论坛 (基因组大数据与AI) [s7] 前沿论坛(基因组大数据与AI)

暂无文件

摘要
Large language models, which can integrate and process large amounts of data in biomedicine, have great potential in modeling complex diseases and discovering functional biomolecules for potential therapeutics. In this talk, we will first introduce the models based on protein language models to efficiently discover remote homologs and functional biomolecules from nature, such as signal peptides. With the model, we can identify remote homologs 22 times faster than PSI-BLAST and discover diverse functional peptides with sequence similarity lower than 20% against the known ones. Then, we developed an RNA language model to model the RNA sequence and structure relation, which enables us to perform RNA structure prediction and reverse design effectively. Within two months, we designed and experimentally validated 19 RNA aptamers that are structurally similar, yet sequence dissimilar, to known light-up aptamers. More importantly, 10 designed aptamers show higher fluorescence than the native Mango-I. The above projects demonstrate the great potential of large language models in promoting fundamental computational biological research and transformational development.
关键词
暂无
报告人
李煜
助理教授 香港中文大学

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    03月28日

    2025

    03月30日

    2025

  • 04月15日 2025

    注册截止日期

主办单位
中国生物信息学学会基因组信息学专业委员会
承办单位
中国农业科学院农业基因组研究所
大鹏湾实验室
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询