单细胞多模态整合识别新型肿瘤细胞亚群
编号:66 访问权限:仅限参会人 更新:2025-03-25 14:38:52 浏览:29次 口头报告

报告开始:2025年03月30日 09:30(Asia/Shanghai)

报告时间:30min

所在会场:[S7] 前沿论坛 (基因组大数据与AI) [s7] 前沿论坛(基因组大数据与AI)

暂无文件

摘要
Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) can determine cell types, states and differentiation trajectories within the heterogeneous tissues. However, it remains challenging to accurately distinguish tumor subpopulations from the scATAC-seq assay. Here, we present a novel multimodal matrix factorization method called MAAS, which integrates chromatin accessibility, copy number variations and single-nucleotide variants solely from scATAC-seq data to identify functional tumor subpopulations with genetic variability. Systematic benchmarking of MAAS demonstrated its superior accuracy (>0.9) and robustness against changed number of cells and subpopulations, compared to state-of-the-art tools for identifying cell subpopulations. When applied to a glioma scATAC-seq dataset, MAAS revealed previously obscured subsets of cells associated with worse survival and higher risk of hypermutation, hidden by copy number variations. In B-cell lymphoma and renal cancer, MAAS successfully deconvoluted progressive tumor subpopulations linked to poorer prognosis and distinct drug responses. In summary, MAAS identifies biologically and clinically pertinent tumor subpopulations by directly integrating genetic and epigenetic features from scATAC-seq data, thus expediting the discovery of potential therapeutic targets.
关键词
暂无
报告人
李磊
研究员 深圳湾实验室

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    03月28日

    2025

    03月30日

    2025

  • 04月15日 2025

    注册截止日期

主办单位
中国生物信息学学会基因组信息学专业委员会
承办单位
中国农业科学院农业基因组研究所
大鹏湾实验室
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询