Modeling of shock-induced plasticity of single-crystalline magnesium with a coupled dislocation and twinning constitutive model
编号:25 访问权限:仅限参会人 更新:2025-04-03 13:51:38 浏览:14次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Despite significant attention over recent decades, the dynamic plasticity of magnesium (Mg) under high pressure and high strain rates remains far from well understood owing to the complexity of deformation under such extreme conditions. In particular, dynamic twinning plasticity is still described by phenomenological models, which limits further understanding of the dynamic mechanical response of metals. In this work, a twinning substructure model, in which twinning nucleation, propagation, and growth are taken into account, is applied to address plastic deformation of single-crystalline Mg subjected to shock compression. The model is coupled with a dislocation plasticity model under the thermoelastic–viscoplastic framework. By utilizing this combined model, a quantitative connection between the evolution of defects, including dislocations and twins, and the experimentally measured wave profiles is established. Modeling the mechanical response of single-crystalline Mg under shock compression provides new insights into the twinning-related plasticity of Mg, revealing that the typical features of the wave profile of Mg are significantly influenced by twinning, especially those along the (10–10) direction. Notably, in contrast to the classical understanding predicted by the dislocation plasticity model that deformation on the elastic precursor wavefront is purely one-dimensional elastic, the new model indicates that twinning nucleation leads to considerable plastic deformation on the elastic precursor wavefront. Additionally, plasticity along the (10–10) direction at the plastic front is demonstrated to be governed by twinning and dislocation mechanisms acting together, while the power-scaling law appears to be almost independent of the twinning mechanisms.
 
关键词
Magnesium,Deformation twinning,Shock loading,Crystal plasticity,Constitutive relationship
报告人
贾穂
学生 流体物理研究所

稿件作者
贾穂 流体物理研究所
姚松林 流体物理研究所
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月12日

    2025

    05月15日

    2025

  • 03月26日 2025

    初稿截稿日期

  • 04月30日 2025

    提前注册日期

  • 05月15日 2025

    注册截止日期

主办单位
北京应用物理与计算数学研究所
陕西师范大学
承办单位
陕西师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询