18 / 2025-02-24 21:54:12
Complex band structure of the high-entropy oxide (MgCoNiCuZn)O accounting for its drastic decrease in the electrical resistance at high pressure
high entropy,oxide,Electrical conductivity,high pressure,bandgap,density functional theory,Band structure
摘要录用
ZhangHengzhong / Center for High Pressure Science & Technology Advanced Research
Previous studies showed that the electrical resistance of the high-entropy oxide (HEO) (MgCoNiCuZn)O markedly decreases as pressure increases up to around 40 GPa, which is beyond what is expected based on the slight reduction in the optical bandgap determined from the UV-Vis measurements [1]. To circumvent the limitations in the UV-Vis measurements of the bandgaps, density-functional theory (DFT) calculations were employed to determine the electronic density of states (DOS) of the HEO at various pressures. The calculations revealed a complex band structure of the HEO under high pressure, exhibiting spin-up bandgaps, spin-down bandgaps, spin-down intermediate gaps, and secondary excitation gaps. Some of these gaps fall outside the energy range detectable by the UV-Vis experiments. However, they do play a role in the electrical conductance of the HEO. In particular, certain bandgaps are closed at high pressure, which significantly impacts the electrical conductance. Our DFT calculations provides new insights into the electronic structure – property relationship not directly inferable from the experimental measurements.

 
重要日期
  • 会议日期

    05月12日

    2025

    05月15日

    2025

  • 03月26日 2025

    初稿截稿日期

  • 04月30日 2025

    提前注册日期

  • 05月15日 2025

    注册截止日期

主办单位
北京应用物理与计算数学研究所
陕西师范大学
承办单位
陕西师范大学
联系方式
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询