101 / 2025-05-12 10:41:10
融合DFNN与MLLM的桥梁多层次风险识别研究
bridge health monitoring; multi-level risk identification; deep feedforward neural network; multimodal large language model; disaster prevention and mitigation engineering
全文待审
李舒 / 清华大学合肥公共安全研究院
Abstract: To address the shortcomings of traditional bridge risk identification methods in multimodal data fusion and cross-modal semantic understanding, a bridge multi-level risk identification method integrating Deep Feedforward Neural Network (DFNN) and Multimodal Large Language Model (MLLM) is proposed. Based on finite element simulation and field monitoring ata, a multimodal risk scenario library is constructed, incorporating structural responses, damage images, and inspection texts. The DFNN model is designed to extract sensing features, while the MLLM enables cross-modal semantic reasoning, with feature fusion enhancing the overall identification capability. Results show that the proposed method achieves an accuracy of 94.2% for risk type classification, 92.8% for location identification, and 91.7% for severity prediction, demonstrating good generalization and robustness in both simulation and experimental bridge tests. This study provides a novel approach and technical support for intelligent bridge monitoring and disaster prevention and mitigation, with promising engineering application value.

 
重要日期
  • 会议日期

    05月16日

    2025

    05月18日

    2025

  • 04月15日 2025

    初稿截稿日期

  • 05月10日 2025

    报告提交截止日期

  • 05月30日 2025

    注册截止日期

主办单位
中国灾害防御协会
江苏省地震局
中国地震学会基础设施工程防震减灾专业委员会
兰州交通大学
承办单位
兰州交通大学土木工程学院
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询