77 / 2025-05-14 19:50:31
Adversarial Discriminative Domain Adaptation for Drive Train of the Wind Turbines Fault Diagnosis Using Acoustic Emission
Wind Turbine, Fault Diagnosis, Acoustic Emission, Domain Adaptation
全文待审
Li Jing / 南京审计大学
The Wind Turbines (WTs) experience gradual wear of gears and bearings under variable weather conditions.This paper presents a novel fault diagnosis method for the drive train of WTs based on Adversarial Discriminative Domain Adaptation (ADDA) and Acoustic Emission (AE). AE, serving as a non-destructive testing technology, is used to detect rub-impact faults in rotating machinery. ADDA, as a form of transfer learning (TL), takes knowledge from a source domain and applies it to a target domain, thereby improving the model's generalization capability. Experiments show that the proposed AE-ADDA method achieves excellent fault diagnosis results.It offers a novel approach to tackle the challenges of fault detection in wind turbine drive trains across varying operational conditions.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月15日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询