19 / 2025-04-28 17:12:51
Research on Fault Diagnosis of Antenna Drive Reducer Bearings Based on SVMD-CNN-LSTM Fusion
Antenna drive reducer bearing,Fault diagnosis,Successive Variational Mode Decomposition (SVMD),Convolutional-Long Short-Term Memory Neural Network (CNN-LSTM)
全文待审
Shike Mo / Xinjiang University
Binbin Xiang / Xinjiang University
Wei Wang / Xinjiang University
Xuetong Yang / Xinjiang University
Longfei Niu / Xinjiang University
Yuming Fan / Xinjiang University

This paper constructs a fault diagnosis model for antenna drive reducer bearings based on the integration of Successive Variational Mode Decomposition (SVMD) and a Convolutional-Long Short-Term Memory Neural Network (CNN-LSTM). The model employs SVMD to decompose bearing vibration signals into multiple intrinsic mode components, forming the dataset. It utilizes CNN to extract local spatial features of the signals and combines the temporal characteristics of LSTM to achieve deep analysis of fault features. Experimental results demonstrate that the proposed model achieves a classification accuracy of 97.63%, outperforming standalone CNN and CNN-LSTM models by 5.94% and 2.42% respectively in accuracy. This model provides a novel solution for fault diagnosis in antenna drive reducer bearings.

 

重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月15日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询