163 / 2025-06-08 17:30:07
Transformer Intelligent Fault Diagnosis Based on Knowledge-Enhanced Data Generation and Kolmogorov-Arnold Networks
Transformer Fault Diagnosis,DGA,Knowledge-Constrained GAN,KAN
全文待审
Ying Liu / China Electric Power Research Institute Co., Ltd.
Xiao Liang / China Electric Power Research Institute Co., Ltd.
Pengfei Tang / China Electric Power Research Institute Co., Ltd.
Sai Zhang / China Electric Power Research Institute Co., Ltd.
Zhihao Wang / China Electric Power Research Institute Co., Ltd.
Shaohe Wang / State Grid Zhejiang Electric Power co., LTD. Research Institute
Transformer fault diagnosis is vital for ensuring the reliability and safety of power systems. Dissolved Gas Analysis (DGA) serves as a key technique in this field. However, the scarcity and imbalance of DGA data significantly hinder the performance of conventional diagnostic models. To address this challenge, this paper proposes a novel diagnostic framework that integrates Knowledge-Enhanced Data Generation with Kolmogorov-Arnold Networks (KAN). By incorporating domain-specific knowledge into the Generative Adversarial Networks (GAN), the generator is guided to produce high-quality synthetic DGA samples, effectively mitigating data scarcity and imbalance. Simultaneously, KAN is employed for its superior nonlinear modeling capabilities to achieve high-precision fault type identification. Experimental results demonstrate that the proposed method significantly improves diagnostic accuracy and robustness on real-world DGA datasets, offering an efficient and reliable solution for intelligent transformer fault detection.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月15日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询