162 / 2025-06-07 15:22:29
Research On Vehicle State Recognition Based On Improved CNN
vehicle status, PHM, improved CNN, engine
全文待审
HU HAO / 陆军装甲兵学院
辅周 冯 / Army Academy of Armored Forces
俊臻 朱 / 车辆工程系
宋 超 / 陆军装甲兵学院
温 政刚 / 陆军装甲兵学院
刘 海亮 / 陆军装甲兵学院
Traditional fault prediction and health management (PHM) methods require complex signal processing, expert experience, and the accuracy of fault identification is low. To solve these problems, a fault diagnosis method of equipping engine based on improved CNN is proposed. Firstly, the vibration signals of equipping engine are collected and grouped. Then, the data are analyzed in frequency domain. Finally, the data are divided into training set and test set and input into improved convolutional neural network for feature extraction and model training to realize the fault identification of equipping engine. The results show that the classification accuracy reaches 98% under four working conditions of equipping engine.

 
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月15日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询