44 / 2024-08-15 11:31:33
Channel Attention-based Spatial-Temporal Graph Convolutional Networks for Action Recognition
action recognition,graph convolutional network,channel attention mechanism,SoftPool
终稿
ChenWeijie / Xidian University
ChengXina / Xidian University
JiaoJianbin / Xidian University
In the domain of human action recognition, skeleton-based methods have attracted widespread attention for their superior robustness. While the Spatial-Temporal Graph Convolutional Networks (ST-GCN) was the first to apply GCNs to model skeleton data, it still struggle to effectively differentiate between essential and redundant features. To address this limitation, in this work we propose a novel Channel Attention-based Spatial-Temporal Graph Convolutional Network (CA-STGCN). Our model integrates SENet with SoftPool, intruducing the SoftPool-SENet (S-SE) module to enhance pooling operations and preserve critical functional information. We validate CA-STGCN on two public datasets, NTU-RGB+D and Kinetics. Experimental results demonstrate that our model outperforms the original ST-GCN model and offers valuable insights for advancing skeleton-based action recognition.
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询