154 / 2024-08-31 19:40:33
Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Generator for Wind Turbine based on ResNet-50 Transfer Learning Model
Permanent Magnet Wind Turbines,Fault Diagnosis,Transfer Learning,convolutional neural network
终稿
DuSiyu / Xi'an Jiaotong University
ChenYu / Xi'an Jiaotong University
ZhangSichao / Xi’an Jiaotong University
LiangFeng / Xi'an Jiaotong University
ShahbazNadeem / Xi’an Jiaotong University
GuoqiangZhu / Xi'an Jiaotong University
zhaoshouwang / Xi'an Jiaotong University
WangShuag / Xi'an Jiaotong University
MaYong / Xi’an Thermal Power Research Institute Co. Ltd
LiChong / Xi’an Thermal Power Research Institute Co. Ltd
ZhongjieWang / Xi’an Thermal Power Research Institute Co. Ltd.
ZhaoYong / Xi’an Thermal Power Research Institute Co. Ltd
Abstract—This paper utilizes Convolutional Neural Networks (CNN) with Residual Networks (ResNet) to identify and classify demagnetization faults in images. Firstly, we collected current feature datasets corresponding to two types of permanent magnet wind turbines, namely 25 kW and 2 MW, representing the source and target domains. Using the source domain dataset, we trained a ResNet50 model specifically for demagnetization fault diagnosis of the 25 kW wind turbine. Subsequently, we applied a network-based transfer learning approach to adapt this model to the demagnetization fault diagnosis for the 2 MW wind turbine, completing the fine-tuning training required for transfer learning. Compared to models without transfer learning, this method significantly improves the accuracy and efficiency of demagnetization fault diagnosis.

 
重要日期
  • 会议日期

    10月31日

    2024

    11月03日

    2024

  • 09月30日 2024

    初稿截稿日期

  • 11月12日 2024

    注册截止日期

主办单位
Anhui University
Xi’an Jiaotong University
Harbin Institute of Technology
IEEE Instrumentation & Measurement Society
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询