Drivers, trends, predictability, and ecosystem implications of the Arabian Sea Oxygen Minimum Zone
编号:401 访问权限:仅限参会人 更新:2024-12-31 20:17:13 浏览:185次 张贴报告

报告开始:2025年01月16日 18:05(Asia/Shanghai)

报告时间:15min

所在会场:[S15] Session 15-Ocean Deoxygenation: Drivers, Trends, and Biogeochemical-Ecosystem Impacts [S15-P] Ocean Deoxygenation: Drivers, Trends, and Biogeochemical-Ecosystem Impacts

暂无文件

摘要
The Arabian Sea OMZ has limited horizontal extent, but large vertical extent, rendering it the third most intense OMZ in the global oceans. This study examines the interannual variability and trends in deoxygenation processes of Arabian Sea OMZ over the period of 2000 to 2020 using the new coupled regional physical-biogeochemical model, HYbrid Coordinate Ocean Model- ECOSystem (HYCOM-ECOSMO). The model showed a high level of accuracy in simulating Dissolved Oxygen (DO) profiles with an overall model efficiency score of 0.81 and a percentage bias of 31%, when validated with the BGC-Argo derived DO profiles. The performance of the model showed consistency when validated against both BGC-Argo data and World Ocean Atlas 2018, yielding Root Mean Square Errors (RMSEs) of 21 µmol kg-1 and 16.5 µmol kg-1, respectively. The model was able to simulate both seasonal and interannual variations in dissolved oxygen (DO) content, but with slight overestimation of the BGC-Argo profiling float DO data. To better understand the oxygen dynamics within the oxygen minimum zone (OMZ), we utilized a supervised learning methodology incorporating a Long Short-Term Memory (LSTM) model to forecast mean oxygen concentrations in the OMZ core (ranging from 0 to 20 µmol kg-1), using monthly data from the HYCOM-ECOSMO model. The input variables included the averages of detritus, primary production, and temperature from the surface to the euphotic depth, as well as nitrate, phosphate, and silicate. The LSTM model was trained and validated, achieving a Nash-Sutcliffe Efficiency of 0.83 for training and 0.65 for testing, with corresponding Mean Absolute Relative Errors of 0.14 and 0.22, and Kling-Gupta Efficiencies of 0.87 and 0.70, respectively. Hyperparameter tuning was then carried out to improve the performance of the model, which included adjusting dropout rates as well as the number of units in the LSTM. This highlights the capability of the model in predicting oxygen concentrations in OMZ and provides important information on the dynamics of this critical feature in the ocean that reacts to climatic changes. The findings of this study would yield better understanding of the relation between variations in OMZ and pelagic fishery of the Arabian Sea.
 
关键词
Arabian Sea Oxygen Minimum Zone, HYCOM-ECOSMO, BGC-Argo, ocean modelling, artificial intelligence, LSTM model
报告人
Akash Somasekharan
Master Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi;Nansen Environmental Research Centre (India), Kochi

稿件作者
Akash Somasekharan Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi;Nansen Environmental Research Centre (India), Kochi
Ranith R Nansen Environmental Research Centre (India), Kochi
Ajith Joseph K Nansen Environmental Research Centre (India), Kochi
Annette Samuelsen Nansen Environmental and Remote Sensing Center, Bergen;Bjerknes Centre for Climate Research, Bergen
Grinson George ICAR-Central Marine Fisheries Research Institute, Ernakulam, Kerala
Nandini Menon. N Nansen Environmental Research Centre (India), Kochi
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询