Intensification of submesoscale frontogenesis and forward energy cascade driven by upper-ocean convergent flows
编号:1358 访问权限:仅限参会人 更新:2024-10-14 15:45:45 浏览:183次 口头报告

报告开始:2025年01月16日 09:00(Asia/Shanghai)

报告时间:15min

所在会场:[S46] Session 46-Oceanic Mesoscale and Submesoscale Processes: Characteristics, Dynamics & Parameterizations [S46-1] Oceanic Mesoscale and Submesoscale Processes: Characteristics, Dynamics & Parameterizations

暂无文件

摘要
Upper-ocean fronts are an important component of the global climate system, regulating both the oceanic energy cycle and material transports. In the common paradigm, upper-ocean fronts are generated by frontogenesis at the mesoscale (20-300 km), driven predominantly by confluent horizontal flows initiated by a background straining field. However, the mechanisms by which this frontogenesis extends down to and influences the submesoscale (0.2-20 km), which dominates vertical transports in the ocean, are still understudied. Here, we provide direct observational evidence that submesoscale frontogenesis, defined as the rate at which submesoscale buoyancy gradients intensify, is closely linked to convergent flows. Analysis of year-long measurements by a mooring array in the North Atlantic indicates that both the upper-ocean frontogenetic rate and the horizontal convergence exhibit strong seasonality and scale dependence, with larger magnitudes in winter and at smaller horizontal scales (down to at least 2 km). The frontogenetic rate is found to correlate more strongly with horizontal convergence as the scale decreases, suggesting that convergent flows are the main driver of submesoscale frontogenesis. Crucially, a rapid forward cascade of kinetic energy and enhanced vertical velocities preferentially occur during periods of submesoscale frontogenesis. Our findings highlight a mechanism underpinning the key role of submesoscale fronts in the oceanic kinetic energy cascade and as a focus of vertical transports, and call for a parameterization of such effects in climate-scale ocean models. 
关键词
submesoscale frontogenesis,energy cascade
报告人
Xiaolong Yu
Associate Professor Sun Yat Sen University

稿件作者
Xiaolong Yu Sun Yat Sen University
Roy Barkan Tel Aviv University
Alberto Naveira Garabato University of Southampton
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询