Neural Network Based Parameterization for Ocean Surface Boundary Layer Turbulence
编号:1125 访问权限:仅限参会人 更新:2024-12-31 10:38:14 浏览:177次 口头报告

报告开始:2025年01月15日 15:20(Asia/Shanghai)

报告时间:15min

所在会场:[S39] Session 39-Ocean Boundary Layer Turbulence: Dynamics and Its Impact on the Earth System [S39-1] Ocean Boundary Layer Turbulence: Dynamics and Its Impact on the Earth System

暂无文件

摘要
Ocean surface boundary layer turbulence plays pivotal roles in shaping the oceanic environment and influencing Earth's climate dynamics. Despite their significance, these fine-scale ocean currents can not be simulated ocean and climate models and are approximated by simplified formulas call parameterizations. Traditionally, parameterizations are derived solely from fundamental physics principles. In this talk, I will present our recent efforts using machine learning techniques to improve those parameterizations and to apply the machine learning based parameterization to better under ocean surface boundary layer turbulence.
关键词
Machine Learning, Ocean Boundary Layer Turbulence
报告人
Junhong Liang
Associate Professor Louisiana State University

稿件作者
Junhong Liang Louisiana State University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询