844 / 2024-09-19 16:10:27
Deep learning for storm surge forecasting in the coastal areas of Zhejiang and Fujian
storm surge,physics-constrained,deep learning,coastal areas of China
摘要录用
Huarong Xie / Nanjing University of Information Science and Technology
Yuli Liu / Nanjing University of Information Science and Technology
Changming Dong / Nanjing University of Information Science and Technology
Storm surge induced by tropical cyclones has consistently been the most devastating among all marine hazards in casualties and economic repercussions. Its accurate forecasting is of great significance for coastal economic and social development. In this study, a physics-informed neural network (PINN) which introduces the two-dimensional storm surge governing equation into a deep neural network (DNN), is proposed to forecast the storm surge events in the coastal areas of Zhejiang and Fujian. The storm surge levels from an advanced circulation (ADCIRC) model are used for training and evaluating the network. A storm surge event during Typhoon ‘Utor’ in 2001 is selected as the forecast case. Results indicate that the PINN-based model is able to accurately forecast storm surge levels with root mean square error (RMSE) below 0.2 m. The RMSE is smaller than that estimated by DNN, with the maximum reduction of 20%, indicating that the physics constraints can effectively improve the model performance in forecasting the storm surge.
重要日期
  • 会议日期

    01月13日

    2025

    01月17日

    2025

  • 09月27日 2024

    初稿截稿日期

  • 01月17日 2025

    注册截止日期

主办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University
Department of Earth Sciences, National Natural Science Foundation of China
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询