DEM Simulation on Creep of Calcium Silicate Hydrate in Microscale
编号:118 访问权限:仅限参会人 更新:2024-04-10 17:13:46 浏览:127次 口头报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Cement and concrete, acknowledged as the most globally utilized materials, possess mechanical characteristics intricately linked to their long-term durability. Despite centuries of use, a complete understanding of these materials remains elusive. Calcium silicate hydrate (C-S-H), a fundamental component of cement, serves as the primary binding agent, crucial in determining concrete strength. The hierarchical structure of C-S-H encompasses various strength-related attributes across multiple levels. Numerous studies extensively delve into the molecular-scale mechanical properties, yielding significant insights. Additionally, comprehending the material's microscale mechanical properties is essential for its engineering functionality. At the microscale, it can be envisioned as a granular substance with a cohesive-frictional solid phase, reminiscent of porous media.
Time-dependent deformation under constant loading (creep) is a significant factor in the long-term volume change of concrete, primarily occurring in calcium silicate hydrate (C-S-H) paste. Despite decades of research, accurately simulating such a complex phenomenon at the microscale remains challenging. For instance, molecular dynamics simulations typically deal with relatively small systems due to computational limitations. C-S-H exhibits complex nanostructures, requiring a larger scale to fully capture its mechanical behaviour. This complexity poses challenges in accurately representing its microstructure in finite element simulations.
In this study, a novel discrete element method based on solid mechanics was employed to model creep deformations in C-S-H and explore microstructure development during creep. Our simulations exhibit good agreement with nanoindentation creep tests, with detailed analysis conducted on the influencing factors affecting bulk mechanical responses. It was discovered that deviatoric stress, friction coefficient, and adhesion between surfaces significantly influence particle sliding, partially determining creep behaviours. These findings offer valuable insights into understanding the mechanism of creep in terms of microstructure change and can aid in nanoengineering C-S-H gels to minimize creep for enhancing concrete properties.
 
关键词
creep,C-S-H,discrete element method,solid mechanics,microstructure,nanoindentation
报告人
ZhangZhe
National University of Singapore

稿件作者
ZhangZhe National University of Singapore
GengGuoqing National University of Singapore
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    05月31日

    2024

    06月03日

    2024

  • 06月03日 2024

    摘要截稿日期

  • 06月03日 2024

    初稿截稿日期

  • 06月03日 2024

    注册截止日期

主办单位
中国力学学会
计算力学专业委员会
颗粒材料计算力学专业组
承办单位
河海大学
大连理工大学
中国颗粒学会
江苏省力学学会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询