Wavelet Transform and Least Square SVM Technique for Zone and Fault Classification in Electrical Transformer
编号:49 访问权限:仅限参会人 更新:2024-08-07 17:51:53 浏览:307次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This article offers an innovative method for power transformer fault zone identification and fault type categorization. A hybrid technique considering wavelet transform (WT) and least square support vector machine (LSSVM) has been applied for a successful outcome. The suggested integrated WT-LSSVM classifier runs using the current signal acquired from the transformer's main and secondary. PSCAD software is used to model the power system simulation, while MATLAB is used to develop the method. Numerous in-zone and out-of-zone faults were created for the validation of the algorithm. Around 12000 fault cases have been generated by altering the system and fault parameters. It has been found that the proposed fault classifier scheme is precise and faithful in the presence of varying system and fault scenarios. The suggested scheme provides classification accuracy of more than 99% in terms of zone identification and fault categorization. Thus, the outcome validates the efficacy of the suggested scheme for accurately classifying power transformer failures.
关键词
Power transformer,Digital protection,Fault classification,Fault zone identification,Wavelet transformer,Least square-support vector machine
报告人
NILESH CHOTHANI
Assistant Professor Pandit Deendayal Energy University; Gandhinagar

稿件作者
NILESH CHOTHANI Pandit Deendayal Energy University; Gandhinagar
Swapnil Kumar Pandit Deendayal Energy University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询