YOLOv8 Transfer Learning In Smart Bin Garbage Sorting Machine
编号:45 访问权限:仅限参会人 更新:2024-08-07 16:25:59 浏览:314次 口头报告

报告开始:暂无开始时间(Asia/Bangkok)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
This paper proposes an idea to efficiently utilize waste products by integrating hardware and software for garbage sorting. The Smart Bin system aims to efficiently categorize and sort waste using advanced image processing and deep learning techniques. A metal sensor is used to identify metal items, while image processing is used to identify other items. In the image processing stage, images are enhanced with kernel filters before using YOLOv8 to predict labels and identify the location of garbage in the images. During the training process, the first 10 layers are frozen and then retrained using a custom image dataset supplemented with images captured from the machine itself. Edge detection in preprocessing further enhances garbage edge predictions and separates objects on the conveyor belt in the sorting machine. The results from the experiment demonstrate the system's capability to identify both the location and type of garbage. This concept is proposed to help solve pollution and waste problems and to inspire the further development of other new projects in the future.
关键词
Waste identification,Smart recycling,Garbage Sorting Machine
报告人
Nopphagaw Thongbai
Lecturer KING MONGKUT

稿件作者
Nopphagaw Thongbai KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK (Prachinburi campus))
Yupin Suppakhun King Mongkut's University of Technology North Bangkok
Wivach Rungshawang King Mongkut's University of Technology North Bangkok
Chanon Warisarn King Mongkut's Institute of Technology Ladkrabang
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    10月24日

    2024

    10月27日

    2024

  • 10月14日 2024

    初稿截稿日期

  • 10月29日 2024

    注册截止日期

  • 10月31日 2024

    报告提交截止日期

主办单位
国际科学联合会
IEEE泰国分会
IEEE计算机学会泰国分会
历届会议
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询