Typhoons in the northwestern Pacific induce strong oceanic responses. Using 17 years of satellite observations, the impacts of typhoons on sea surface temperature (SST) and chlorophyll-a (Chl-a) are investigated. The SST time series shows that the SST begins to decrease 2 days before the typhoon’s arrival and continues to decrease until 2 days following the typhoon’s passage. The Chl-a has a weak peak 2 days prior to the typhoon’s arrival, rapidly increases after the typhoon arrives, reaches the strongest response on the third day of the typhoon, and gradually decreases to a value slightly higher than the pre-typhoon level. Prominent responses are associated with typhoons that have stronger intensity and slower translation speed. The pre-typhoon upper ocean structure plays a dominant role in determining oceanic responses. Surface cooling is generally stronger where the pre-typhoon mixed layer depth (MLD) is shallow. However, the change in Chl-a shows a contrasting response in that the response prominently increases only when the depth of typhoon-induced mixing exceeds the pre-typhoon MLD. This study poses a quantitative approach to assess the influence of typhoons on the upper ocean from a statistical perspective with consideration of the upper ocean structure.
Coastal Zones Under Intensifying Human Activities and Changing Climate: A Regional Programme Integrating Science, Management and Society to Support Ocean Sustainability (COASTAL-SOS)
承办单位
State Key Laboratory of Marine Environmental Science, Xiamen University College of Ocean and Earth Sciences, Xiamen University China-ASEAN College of Marine Sciences, Xiamen University Malaysia