Load Frequency Control Strategy for Two-Area Power System Considering Deep Reinforcement Learning Algorithm
编号:74 访问权限:仅限参会人 更新:2023-11-20 13:45:39 浏览:512次 口头报告

报告开始:2023年12月09日 16:15(Asia/Shanghai)

报告时间:15min

所在会场:[S7] Power system protection and control [S7] Power system protection and control

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In this paper, we propose a data-driven load frequency control(LFC) method for a wind-fire multi-energy complementary power generation system. The method converts the LFC problem into a maximization reward function problem by constructing a reward function that includes control performance criteria (CPS) and dynamic performance indicators. It introduces a deep deterministic policy gradient(DDPG) algorithm to solve the problem. Then, the optimal adaptive coordinated frequency control strategy under the actual wind turbine output is obtained through pre-learning and online application. Finally, the analysis is conducted to evaluate the mid-to long-term control performance. The effectiveness and feasibility of the proposed method in improving the performance of LFC are verified by conducting a simulation with continuous step disturbance perturbations. The simulation results show that the proposed algorithm can effectively suppress fluctuations when the system is perturbed, and reduce the regulation time required to complete LFC.
关键词
Load frequency control,multi-energy complementary power generation system,maximization reward function problem,deep deterministic policy gradient,CPS index
报告人
YuDong Liang
assistant engineer State Grid Sichuan Electric Power Company Technical Training Center

稿件作者
YuDong Liang State Grid Sichuan Electric Power Company Technical Training Center
Bin Zhao State Grid Sichuan Electric Power Company Technical Training Center
Xiaoqin Hao State Grid Sichuan Electric Power Company Technical Training Center
Li Zhang State Grid Sichuan Electric Power Company Technical Training Center
Weiheng Wang State Grid Sichuan Electric Power Company Technical Training Center
Li Fu State Grid Sichuan Electric Power Company Technical Training Center
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询