An Adaptive Population-Based Incremental Learning Method Applied to Global Optimization of Device Designs
编号:105 访问权限:仅限参会人 更新:2023-11-29 16:06:58 浏览:540次 口头报告

报告开始:2023年12月10日 11:15(Asia/Shanghai)

报告时间:15min

所在会场:[S8] AI-driven technology [S8] AI-driven technology

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
In a traditional evolutionary algorithm, the selection, crossover, and mutation are commonly used to evolve its searching procedure. For a robust and feasible evolutionary algorithm, these operators must be properly designed. Nevertheless, the proper design of these operators is not an easy task. On the other hand, it would be preferable for an algorithm that the previously explored solutions can be used to help the creation of new solutions or states. In this point of view, evolutionary methods using probabilistic models are deserved further attentions. The Population-Based Incremental Learning (PBIL) algorithm can be categorized into this type of algorithms. The PBIL is initially developed as a binary coded algorithm, and is awkward to some extent in applying to solve a design problem with continuous variables. In this respect, an adaptive continuous PBIL is introduced. In the newly improved PBIL method, an automatic mechanism is presented to update the probability matrix, which is adopted to stochastically produce the offspring, to obtain a balance among the fast convergence and the high quality final solution. Two examples are numerically solved by the introduced PBIL method to highlight its advantages and deficiencies. 
关键词
Adaptive updating, evolutionary algorithm, inverse problem, population based incremental learning (PBIL).
报告人
Shiyou Yang
Professor Zhejiang University

稿件作者
Jian Yang State Grid Taizhou Electric Power Supply Company, Taizhou, 318000, China.
Yong Zhang State Grid Zhejiang Electric Power Supply Company, Hangzhou, 310007, China.
Shiyou Yang Zhejiang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询