48 / 2023-10-01 17:43:45
Deep Learning -Based Remaining Life Prediction for DC-Link Capacitor in High Speed Train
Residual life prediction, support capacitors, long short-term memory neural networks, macro-micro attention mechanism, particle swarm optimization.
终稿
Zhang Kunpeng / East China Jiaotong University
The accurate prediction of the remaining useful life of DC-link capacitors is crucial in high-speed railway traction drive operating conditions. This prediction takes into account environmental factors, physical structure, and strict safety operation requirements. In this paper, we propose a method for predicting remaining life using deep learning optimized by the particle swarm algorithm. Firstly, the upper and lower voltage of the capacitor are selected as the characteristic values. By denoising the voltage with wavelet transform, we calculate failure thresholds for both ends of the support capacitor. Then, we amplify the input weights in real-time using the Long Short-Term Memory (LSTM) neural network with a macro-micro attention mechanism. Finally, we utilize the particle swarm optimization algorithm to optimize the number of input units and the learning rate of the neural network for the purpose of predicting lifetime. The effectiveness of this method is verified through model evaluation indices in a case study of high speed train traction system.

 
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询