29 / 2023-09-23 15:34:06
Optimal Strategy of Power Grid Operation and Maintenance based on Artificial Neural Network
Power grid operation and maintenance,artificial neural network,reinforcement learning,uncertainty
终稿
Tong Weilin / Wuxi Power Supply Company of State Grid
Li Kang / Nanjing Power Supply Company of State Grid
Zhao Yulin / Jiangsu Supply Company of State Grid
Considering the uncertain characteristics of power grid operation, a reinforcement learning(RL) framework is designed to optimize power grid operation and maintenance. RL constructs an environment-dependent random behavior model. By using the running state of grid components for prediction and learning, the optimal decision-making behavior to maximize expected profits can be determined in an uncertain environment. Artificial neural network (ANN) tool is used to replace tabular representation of state-behavior value function, and a non-tabular RL algorithm integrated with ANN is designed to improve the adaptability of RL algorithm. Test results in small-scale power grid show that compared with reference Bellman optimality strategy, ANN has better Q-learning approximation ability, and collect valid information from predictive state of components, and can be used to support the optimal operation and maintenance strategy.

 
重要日期
  • 会议日期

    12月08日

    2023

    12月10日

    2023

  • 11月01日 2023

    初稿截稿日期

  • 12月10日 2023

    注册截止日期

主办单位
IEEE IAS
承办单位
Southwest Jiaotong University (SWJTU)
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询