Chuansheng Yin, Yongteng Yuan, Shaoyong Tu, Wenyong Miao, Yunsong Dong, Xiaoxi Duan and Zhebin Wang Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, 621900, China As J. Edwards first reported in 2004,1 the high energy density of pulsed lasers can be used to generate quasi-isentropic loading in solids to high pressures but low temperatures, keeping the metal target at solid phase. This shockless compression technique can be used to study material strength under extremely high pressure.2-4 On the SG series laser facility in the Laser Fusion Research Center(LFRC), the energy of a short laser pulse is used to drive a strong shock trough a platic reservoir which unloads at the back surface, expands across a 400 μm vacuum gap and stagnates against the aluminium target. Two different metal targets were used in this study. For flat aluminium foils, Velocity Interferometer System for Any Reflectors(VISAR) was used to measure the particle velocity of the target back surface. The peak pressure was about 1.3 Mbar. For sinusoidal distrubance interface, several shots at different time were conducted to measure RT instability growth by side-on radiography, using high-resolution spherically bent crystal monochromatic imaging system with 5.2keV vanadium backlight. Experimental results indicate strong stabilization of the RT instability growth rate which can be explained by the enhanced material strength of metal foils due to phonon drag. 1. J. Edwards et al., “Laser-Driven Plasma Loader for Shockless Compression and Acceleration of Samples in the Solid State,” Physical Review Letters, 2004, 92, 075002 2. Raymond F. Smith et al., “High planarity x-ray drive for ultrafast shockless-compression experiments,” 2007, 14, 057105 3. Hye-Sook Park et al., “Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures,” 2010, Physics of Plasmas, 92, 056314 4. Bruce A. Remington et al., “Rayleigh-Taylor instabilities in high-energy density settings on the National Ignition Facility,” 2018, PNAS, 10, 1073 ________________________________ * Work supported by the National Natural Science Foundation of China (Grant No. 12205275) |
06月05日
2023
06月09日
2023
提前注册日期
摘要截稿日期
摘要录用通知日期
初稿截稿日期
注册截止日期
2025年05月12日 中国 西安市
第八届极端条件下的物质与辐射国际会议2024年05月13日 中国 Hangzhou
第七届极端条件下的物质与辐射国际会议2020年05月25日 中国 Xi'an
第五届极端条件下的物质与辐射国际会议2019年05月29日 中国 Hefei
第四届极端物质与辐射国际会议2017年06月01日 中国 Beijing,China
第二届极端物质与辐射国际会议