Stack Denoising Autoencoder and State-Space Model Based Bearing RUL Prediction Method
编号:4 访问权限:公开 更新:2022-12-15 11:23:19 浏览:576次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

摘要
Rolling element bearing is a critical component in a machinery, so its remaining useful life (RUL) prediction becomes a research hotspot in recent years. In this work, a RUL prediction method based on stack denoising autoencoder (SDA) and non-overlapping sliding window (NOSW) threshold method is proposed. The health indicator is constructed by the SDA from 19 time-domain features, which balances the sensitivity and robustness of different features. A novel NOSW threshold method is used to identify the degradation initial time and divide the life cycle into normal operating stage and degradation stage. A state-space model based on the Paris-Erdogan model is established and its noise intensity is estimated by a smoothing estimation method. The particle filtering is employed to track the degradation path and quantify the uncertainty of RUL prediction.
关键词
remaining useful life;stack denoising autoencoder;particle filter;Paris-Erdogan model;state-space model
报告人
Lei Yang
Xi’an Jiaotong University

发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    11月30日

    2022

    12月02日

    2022

  • 11月30日 2022

    初稿截稿日期

  • 12月24日 2022

    报告提交截止日期

  • 04月13日 2023

    注册截止日期

主办单位
Harbin Insititute of Technology
China Instrument and Control Society
Heilongjiang Instrument and Control Society
Chinese Institute of Electronics
IEEE I&M Society Harbin Chapter
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询