Classification of VLF/LF Lightning Signals using Deep Learning Method
编号:476 访问权限:仅限参会人 更新:2022-09-13 09:58:39 浏览:144次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The identification of lightning return stroke waveform plays an important role in the accurate location of lightning. Very low frequency/low frequency (VLF/LF) electromagnetic signals are widely used in lightning detection systems. The signals in this frequency band have a long propagation distance and are prone to attenuation distortion, which makes it more possible to misclassify the return stroke waveforms when using methods based on some specific waveform characteristic. The convolutional neural network is robust enough and performs well at discovering hidden patterns in images. In this paper, the residual convolutional neural network model is trained to obtain the waveform classifier. The lightning waveform data dataset is collected by lightning electric field measuring meters deployed in various provinces. After training, the classification accuracy of this classifier reaches 97.2% in the test set, and the accuracy reaches 86.75% using the traditional method based on waveform characteristics. The result proves the superior performance of the residual convolutional neural network model. By exploring the interpretability of the model, it is also proved that the better performance of the convolution network model comes from making full use of waveform information.
关键词
convolutional neural network;VLF/LF lightning waveform;model interpretability
报告人
Lilang Xiao
Huazhong University of Science and Technology

稿件作者
Lilang Xiao Huazhong University of Science and Technology
恒鑫 贺 华中科技大学
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询