Determining accelerated aging power cable spatial temperature profiles using Artificial Neural Networks
编号:455 访问权限:仅限参会人 更新:2022-09-10 22:30:11 浏览:118次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The spatial temperature profile of Medium-Voltage (MV) extruded power cable, undergoing accelerated aging in a tank filled with water according to IEEE standard 1407 guidance, is estimated by combining Finite-Element Modelling (FEM) and an Artificial Neural Network (ANN). ANSYS Fluent is first used to establish a 3-D finite-element model and to simulate the temperature distribution within the power cable. In order to estimate temperature at any position within the power cable thus informing a more accurate aging model based on the variation temperature with position, a 3 layers ANN, trained by Bayesian regularization back-propagation is then developed. For the ANN, the FEA simulation temperature profiles at specified nodes are used as the input information. The resulting model is useful to understand how each position within a cable undergoing artificial aging is affected by different temperatures.
关键词
Accelerated aging;power cable;Temperature profile;Finite Element Analysis (FEA);Artificial neural network
报告人
Xufei Ge
PhD University of Strathclyde

PhD student
Electronic and Electrical Engineering Department
University of Strathclyde

稿件作者
Xufei Ge University of Strathclyde
Martin Given University of Strathclyde
Brian G. Stewart University of strathclyde
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询