Quality state grade prediction of transformer oil based on SVM and multi-frequency ultrasonic
编号:356 访问权限:仅限参会人 更新:2022-08-29 15:58:19 浏览:115次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
 Transformer oil is an important insulating medium in power transformers, and its quality state could reflect the dielectric strength. In this paper, four indexes were selected to analyze the integrated quality of the transformer oil and judge the operating state of the transformer. The parameters include micro water, dielectric loss factor, breakdown voltage and interfacial tension. The multi-frequency ultrasonic testing equipment was used to test the transformer oil by means of the ultrasonic penetration detection method and reflection detection method. And we obtained 242 dimensional data, which can characterize the comprehensive quality of the transformer oil. The data includes amplitude and phase under different frequencies.   Support vector machine(SVM) algorithm was adopted to establish the transformer oil quality evaluation and classification prediction model based on multi-frequency ultrasonic technology. The tested transformer oil ultrasonic data was chosen as input and the oil quality grade as output respectively. Through the training and prediction, the classification accuracy could only reach 74.57%. And cross-validation was used to optimize the parameters of the SVM kernel function, and the optimal parameters c=588.1336 and g=0.0068 were obtained, with the classification accuracy rate reaching 91.52%. It is of great significance to apply the multi-frequency ultrasonic combined with cross-validation of support vector machines into detecting the transformer.

 
关键词
transformer oil,multi-frequency ultrasonic,support vector machines,quality grade
报告人
Qu Zhou
教授 Southwest University

稿件作者
Qu Zhou Southwest University
Ning Li State Grid Chongqing Changshou Electric Power Supply Branch
Xia Hu State Grid Chongqing Changshou Electric Power Supply Branch
Yinyang Huang State Grid Chongqing Changshou Electric Power Supply Branch
Jie Huang State Grid Chongqing Changshou Electric Power Supply Branch
Tao Chen State Grid Chongqing Changshou Electric Power Supply Branch
Lufen Jia Southwest University
Zhiqi Gu State Grid Chongqing Changshou Electric Power Supply Branch
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询