Feature Analysis and Identification of Low-voltage Series Arc Fault
编号:336 访问权限:仅限参会人 更新:2022-08-29 15:56:29 浏览:128次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Fires caused by arc faults are increasing every year, but low-voltage AC series arc faults are tricky to be detected by traditional methods because of its concealment. A detection algorithm based on multi-feature fusion to analyze arc faults is proposed in this paper. Furthermore, different loads, including motor loads and the power electronic loads, are selected to extract arc characteristics by combining various methods, especially Empirical Wavelet Transform (EWT). In contrast with some traditional modal decomposition algorithms, EWT can overcome modal aliasing and end-point effects, and improve the quality of the frequency band. Then, the change in signal complexity is calculated by introducing the Shannon entropy of the frequency band signal. In order to make the results more accurate, several classical features are integrated as the input elements of the neural network in this paper. Finally, the Scaled Conjugate Gradient Backpropagation algorithm is used to identify arc faults. The detection results with detection accuracy of over 99.8% by training the existing features, prove that the multi-feature fusion algorithm can detect AC arc faults effectively and accurately.
 
关键词
Energy Feature Extraction,waveform,time domain
报告人
Xiaoxue Chang
Nanjing University of Aeronautics and Astronautics

稿件作者
Xiaoxue Chang Nanjing University of Aeronautics and Astronautics
Xu Zhang Nanjing University of Aeronautics and Astronautics
Yanbo Tao Nanjing University of Aeronautics and Astronautics
Wenqian Zhang Nanjing University of Aeronautics and Astronautics
Jun Jiang Nanjing University of Aeronautics and Astronautics
Chaohai Zhang China;Wuhan NARI Limited Company of State Grid Electric Power Research Institute
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询