475 / 2022-03-16 00:10:33
A data-driven fault classification method for microgrids
Microgrids, Fault Classification, Bayesian optimization, Deep learning model
终稿
王 劲松 / 重庆大学
杨 鸣 / 重庆大学
司马 文霞 / 重庆大学
永福 李 / State Grid Chongqing Electric Power Company Electric Power Research Institute
骁枭 罗 / State Grid Chongqing Electric Power Research Institute Chongqing
张 涵 / 重庆大学
This paper presents a method that combines wavelet decomposition and deep learning for fault classification in microgrids (MG). Bayesian optimization is used to find the best wavelet function for matching traces to extract deep features of rich data. And these extracted deep features are used as complementary inputs to a deep learning model. One-dimension convolutional neural network (1-D CNN) is used to complete the secondary conversion of data features and high-dimensional feature mapping. The data are transformed by dimensionality and bi-directional long and short-term memory network. The data information mining is completed by using the multi-branch structure of the network to filter and merge the multidimensional effective information learned from each network branch. We also compare and analyze five different classification techniques (i.e., decision tree, k-nearest neighbor, support vector machine, random forest, and xgboost) and compare their performance statistically. After modeling the MG system in the simulation software, the Consortium for Electrical Reliability Technology Solutions (CERTS) MG is used to illustrate the effectiveness of the proposed approach.
重要日期
  • 会议日期

    09月25日

    2022

    09月29日

    2022

  • 08月15日 2022

    提前注册日期

  • 09月10日 2022

    报告提交截止日期

  • 11月10日 2022

    注册截止日期

  • 11月30日 2022

    初稿截稿日期

  • 11月30日 2022

    终稿截稿日期

主办单位
IEEE DEIS
承办单位
Chongqing University
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询