Asphalt Pavement Crack Detection Based on SegNet Network
编号:723 访问权限:仅限参会人 更新:2021-12-03 10:27:58 浏览:102次 张贴报告

报告开始:2021年12月19日 11:25(Asia/Shanghai)

报告时间:15min

所在会场:[T2] Track II Transportation Infrastructure Engineering [S2-4] Simulation and Characterization on Transportation Materials

暂无文件

摘要
A novel scheme combining image processing with deep learning is proposed to solve the problems of illumination non-uniformity and impurities in asphalt pavement images. The method first used illumination non-uniformity correction, contrast enhancement and image denoising methods to highlight the cracks. The SegNet network is then used to achieve effective crack segmentation. Finally, through morphological methods and regional connections, interference is effectively removed, and the final crack skeleton is obtained. The results show that the Mean Intersection over Union can reach 70.08%, which is about 3 percentage points higher than that of the method without pre-processing, and achieves a good detection effect.
关键词
CICTP
报告人
Jun Zhao
Chang’an Univ.

稿件作者
Jun Zhao Chang’an Univ.
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询