State of Charge Estimation for Battery Based on Improved Cubature Kalman Filter
编号:445 访问权限:仅限参会人 更新:2021-12-03 10:21:29 浏览:125次 张贴报告

报告开始:2021年12月17日 09:54(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T3] Track 3 Vehicle Operation Engineering and Transportation Management

暂无文件

摘要
ABSTRACT:This study conducted the following research on the SOC estimation of lithium-ion battery: Aiming at the parameter identification problem of battery model, an online identification method for model parameters based on the recursive least squares method of forgetting factor (FRLS)was proposed. The model parameters were identified online and updated in real time, avoiding the model error caused by the fixed model parameters. For the problem of noise sensitivity in cubature Kalman filtering, an adaptive cubature Kalman filter method based on random weighting (ARWCKF) was proposed, which restrained the disturbances of system noises on state estimation and avoided the error caused by the fixed weight value of the cubature point. The results indicate that the online parameter identification based on recursive least squares method and ARWCKF filtering have good estimation accuracy and fast convergence ability. The voltage estimation error does not exceed 40mV, and the SOC estimation error does not exceed 1%. Keywords: vehicle engineering;lithium-ion battery;cubature Kalman filter;State of Charge;random weighted;
关键词
CICTP
报告人
Zhang Dayu
CHANG'AN University

稿件作者
Zhang Dayu CHANG'AN University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询