Short-Term Speed Forecasting of Large-Scale Urban Road Network Based on Transformer
编号:2053 访问权限:仅限参会人 更新:2021-12-03 15:37:06 浏览:148次 张贴报告

报告开始:2021年12月17日 09:07(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Intelligent transportation systems (ITS) have developed rapidly for urban road networks in recent years. Accurate and efficient short-term traffic flow speed prediction is the key to the realization of ITS. Traffic flow data usually perform stochastic and nonlinear characteristics, making short-term forecasting of large-scale urban road networks challenging. To extract the spatial and temporal correlations between traffic flows, we propose a novel short-term speed forecasting of large-scale urban road network based on the deep learning algorithm Transformer used in the field of natural language processing. We test the model using a real floating car dataset collected on a large-scale urban road network. It is found that the Transformer model shows high prediction accuracy and efficiency performance and outperforms the benchmark models.
关键词
CICTP
报告人
Xiqun Chen
Zhejiang University

稿件作者
Xiqun Chen Zhejiang University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询