Reinforcement Learning Based Demand-responsive Public Transit Dispatching
编号:1965 访问权限:仅限参会人 更新:2021-12-03 14:43:41 浏览:139次 张贴报告

报告开始:2021年12月17日 08:41(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Public transit systems play an important role in the alleviation of traffic congestion in urban road networks. The same vehicle type and a fixed departure timetable are usually applied to a bus route in the conventional public transit systems. They fail to cater to the time-varying travel demand or the diversified characteristics of transit passengers. To this end, this study proposes a demand-responsive public transit (DRPT) system consisting of a fixed bus route and demand-responsive stops with multiple vehicle types. The vehicle types of dispatched buses and the ride-matching schemes are optimized to serve transit passengers in real-time. Due to the non-convexity, Deep Q-Network (DQN), a reinforcement learning (RL) algorithm, is applied to the dynamic dispatching problem in the proposed DRPT system. The numerical studies validate the advantages of the proposed DRPT system and the RL-based dispatching algorithm.
关键词
CICTP
报告人
Mian Wu
The Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University

稿件作者
Chunhui Yu The Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询