Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
编号:194 访问权限:仅限参会人 更新:2021-12-03 10:15:59 浏览:138次 张贴报告

报告开始:2021年12月17日 09:35(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
The traffic congestion becomes a severe problem in almost every city and the applications of Intelligent Transportation Systems makes it possible for an adaptive traffic signal control system to improve signal control strategy. Exploiting deep reinforcement learning for traffic signal control is a frontier topic in intelligent transportation research. However, centralized reinforcement learning is hard to be used for large-scale traffic signal control system due to the high dimensions of the joint action space. Multi-agent deep reinforcement learning overcomes the curse of dimensions but introduces a new problem: how to learn coordination between different agent under a partially observable traffic environment. In this paper, we introduce a multi-agent deep reinforcement learning algorithm for a large-scale traffic signal control system. The proposed method is compared with greedy policy, independent Q-learning method and independent actor critic method in a large synthetic traffic networks on the SUMO microscopic traffic simulation platform. The simulation demonstrate the proposed method is more efficient than other decentralized reinforcement learning approach.
关键词
CICTP
报告人
Jianming Hu
Department of Automation, Tsinghua University

稿件作者
Jianming Hu Department of Automation, Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询