Research on Fast Modeling Method of 3D Map Based on Point Cloud Data
编号:192 访问权限:仅限参会人 更新:2021-12-13 23:24:16 浏览:127次 张贴报告

报告开始:2021年12月17日 09:33(Asia/Shanghai)

报告时间:1min

所在会场:[P1] Poster2020 [P1T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
With the development of smart cars, map accuracy requirements continue to increase. Traditional maps can carry limited information from artificial site mapping, which is time-consuming and labor-intensive. Therefore, it is important to create 3D reconstructions quickly and efficiently, and to add more portable information. We propose a 3D map based on real-time reconstruction. An advantage of point cloud data is that it is simple to collect, allowing for real-time collection and reconstruction. Here, we analyze modeling point cloud data through data preprocessing, matching of point cloud data, point cloud integration and segmentation operation, the curve and curved surface reconstruction, and establishing a good model for surface smoothing. The experimental environment adopts KinectFusion accelerated by GPU, which can produce dense 3D reconstructions in real time and display 3D maps quickly and conveniently with Unity. For this time-consuming problem, we use octrees instead of KD trees to optimize map reconstruction.
关键词
暂无
报告人
Jing Lu
Chang'an University

稿件作者
Jing Lu Chang'an University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询