A GPS trajectory segmentation method for transportation mode inference
编号:1779 访问权限:仅限参会人 更新:2021-12-03 13:45:50 浏览:115次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
In recent years, many researches focus on inferring transportation modes from traveler's GPS trajectory data. Generally speaking, algorithms for solving this problem can be divided into two steps. The first step is to divide the GPS trajectory which may have multiple transportation modes into single transportation mode segments, and the second step is to infer the transportation mode of each segment. Most of the current researches focus on the second step, while ignoring the attempt to improve the effectiveness of the first step. In this paper, we focus on the first step of inferring transportation mode from GPS trajectory data, and try to improve the time accuracy, recall, and precision values of the transportation mode change point detection. Compared with previous solutions to this problem, our method adopts some new strategies to improve the effectiveness of detection. Applied to the Geolife dataset, our method achieves relatively good result. The recall of transportation mode change point detection is 100%, and 87.8% of them are detected within 20 seconds of their real moment. In the experiment analysis section of this paper, we describe the time intervals between each real transportation mode change point and the corresponding point we detected, which is not mentioned in previous researches.
关键词
CICTP
报告人
Yao DanYa
Tsinghua University

稿件作者
Yao DanYa Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询