Research on Congestion Path Analysis Algorithm Based on Spatiotemporal Correlation of Traffic State of Urban Road Networks
编号:1692 访问权限:仅限参会人 更新:2021-12-03 13:43:58 浏览:125次 张贴报告

报告开始:2021年12月17日 08:34(Asia/Shanghai)

报告时间:1min

所在会场:[P2] Poster2021 [P2T1] Track 1 Advanced Transportation Information and Control Engineering

演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Short-term traffic flows in urban road networks have significant random and non-linear features. Researches on the spatiotemporal correlations of short-term traffic flows can demonstrate the entire evolution process of traffic congestion life cycles, thus helping traffic managers make traffic dispatches or interventions in advance for the traffic flows in the entire traffic road networks, so as to improve the traffic capacity of road networks. Firstly, the existing Pearson correlation analysis method is improved in this research first by separating floating car data and extracting the trends and detail vectors of road traffic flows, and introduction of the generalized least squares method makes Pearson method closer to the evolution of road traffic conditions. Secondly, based on the characteristics of traffic state classification, the Kendall coefficient is introduced to study the evolution of road traffic flow states. And finally, a high-correlation path search method based on fusion coefficients is proposed to provide method supports for traffic congestion prediction.
关键词
CICTP
报告人
zhi chen
North China University of Technology

稿件作者
zhi chen North China University of Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询