Short –term Prediction Of Available Parking Space Based On Improved Wavelet Neural Network
编号:1572 访问权限:仅限参会人 更新:2021-12-03 13:41:17 浏览:100次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
Accurate short-term prediction of available parking space (APS) is the basic theory of parking guidance information system (PGIS). This study collected the data on parking availability at several on-street parking space at 12th AVE, Settle, America to investigate the changing characteristics of APS, and predicted the APS based on improved wavelet neural network (WNN). It presents an improved WNN algorithm with wavelet (WA) decomposition and particle swarm optimization (PSO). The original time series was decomposed and reconstructed by wavelet analysis, and the WNN algorithm finds the optimal threshold of initial weight through PSO. Compared with the methods of BPNN, WNN, PSO-WNN, the WA-PSO-WNN algorithm performs much better on predicting accuracy and stability. Keywords: APS, short-term prediction, wavelet analysis, particle swarm optimization, wavelet neural network
关键词
CICTP
报告人
Jinfen Wang
Ningbo University

稿件作者
Jinfen Wang Ningbo University
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    12月17日

    2021

    12月20日

    2021

  • 12月16日 2021

    报告提交截止日期

  • 12月24日 2021

    注册截止日期

主办单位
Chinese Overseas Transportation Association
Chang'an University
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询